The additive abelian group \(\Z/n\Z\) is endowed with the structure of a ring via the multiplication
\begin{equation*}
\overline{a}\overline{b} = \overline{ab}\text{.}
\end{equation*}
First we prove this binary operation is well-defined. Let \(a,b,c,d \in \Z\) be given. Assume \(a \equiv c \pmod{n}\) and \(b \equiv d \pmod{n}\text{.}\) There exist \(k_1, k_2 \in \Z\) such that \(-a + c = k_1n\) and \(-b + d = k_2n\text{.}\) Hence
\begin{align*}
-ab + cd \amp= -ab + bc - bc + cd\\
\amp= (-a + c)b + c(-b + d)\\
\amp= (bk_1)n + (ck_2)n\\
\amp= (bk_1 + ck_2)n
\end{align*}
implies \(ab \equiv cd \pmod{n}\) and thus this binary operation is independent of the representatives chosen. Since \(\Z\) is a unital, commutative ring, this multiplication is associative, left distributive, right distributive, and has identity element \(\overline{1}\text{.}\) Indeed, for all \(\overline{a} \in \Z/n\Z\text{,}\)
\begin{equation*}
\overline{1}\, \overline{a} = \overline{1a} = \overline{a}
\end{equation*}
and for all \(\overline{a}, \overline{b}, \overline{c} \in \Z/n\Z\text{,}\)
\begin{align*}
\overline{a}(\overline{b} + \overline{c}) \amp= \overline{a}\, \overline{b + c} = \overline{a(b+c)} = \overline{ab + ac} = \overline{ab} + \overline{ac} = \overline{a}\,\overline{b} + \overline{a}\,\overline{c}\\
(\overline{a} + \overline{b})\overline{c} \amp= \overline{a + b}\, \overline{c} = \overline{(a + b)c} = \overline{ac + bc} = \overline{ac} + \overline{bc} = \overline{a}\,\overline{c} + \overline{b}\,\overline{c}
\end{align*}
Therefore \(\Z/n\Z\) forms a ring under addition and multiplication of representatives.