Assume that for all \(a,b \in G\text{,}\)
\begin{equation*}
a \equiv_\ell b \pmod{N} \iff a \equiv_r b \pmod{N}\text{.}
\end{equation*}
Let \(a \in G\) be given. For all \(g \in G\text{,}\)
\begin{align*}
g \in aN \amp\iff g \equiv_\ell a \pmod{N}\\
\amp\iff g \equiv_r a \pmod{N}\\
\amp\iff g \in Na\text{.}
\end{align*}
Hence for all \(a \in G\text{,}\) \(aN = Na\text{.}\)
Assume for all \(g \in G\text{,}\) \(gN = Ng\text{.}\) To show that \(G/N\) is a group, we must first prove that the binary operation is independent of the chosen representative. Let \(a,b,c,d \in G\) be given. Suppose \(a \equiv_\ell c \pmod{N} \iff a^{-1}c \in N\) and \(b \equiv_\ell d \pmod{N} \iff b^{-1}d \in N\text{.}\) Since \(dN = Nd\text{,}\) there exists \(n \in N\) such that \((a^{-1}c)d = dn\) and thus
\begin{equation*}
(ab)^{-1}cd = b^{-1}\left(a^{-1}c\right)d = \left(b^{-1}d\right)n \in N\text{.}
\end{equation*}
Hence \(ab \equiv cd \pmod{N} \iff (ab)N = (cd)N\text{.}\) This establishes that the binary operation is well-defined.
Associativity, identity, and inverses for this binary operation are inherited from the binary operation on \(G\text{.}\)
- Associativity
For all \(a,b,c \in G\text{,}\)
\begin{align*}
(aNbN)cN
\amp= (ab)NcN\\
\amp= ((ab)c)N\\
\amp= (a(bc))N\\
\amp = aN(bc)N\\
\amp= aN(bNcN)
\end{align*}
- Identity
For all \(g \in G\text{,}\)
\begin{align*}
(1N)(gN) \amp = (1g)N\\
\amp = gN\\
\amp = (g1)N\\
\amp = (gN)(1N)
\end{align*}
implies \(1N = 1_{G/N}\text{.}\)
- Inverses
For all \(g \in G\text{,}\)
\begin{align*}
(gN)(g^{-1}N) \amp = (gg^{-1})N\\
\amp = 1N\\
\amp = (g^{-1}g)N\\
\amp = (g^{-1}N)(gN)
\end{align*}
implies that \((gN)^{-1} = (g^{-1}N)\text{.}\)
Hence if for all \(g \in G\text{,}\) \(gN = Ng\text{,}\) then \(G/N\) is a group under the binary operation \((aN)(bN) = (ab)N\text{.}\)
Assume
\(G/N\) is a group under the binary operation
\((aN)(bN) = (ab)N\text{.}\) For all
\(a,b \in G\text{,}\) the
Canonical Projection to the Quotient,
\(\pi \colon G \to G/N\) satisfies
\begin{equation*}
\pi(ab) = (ab)N = (aN)(bN) = \pi(a) \pi(b)
\end{equation*}
by definition of the binary operation on \(G/N\text{,}\) and thus \(\pi\) is a morphism of groups. For all \(a \in G\text{,}\)
\begin{align*}
a \in \ker{\pi} \amp\iff aN = \pi(a) = 1N\\
\amp\iff a \equiv_\ell 1 \pmod{N}\\
\amp\iff a \in 1N = N\text{.}
\end{align*}
Hence if \(G/N\) is a group, then \(\pi \colon G \to G/N\) is a morphism of groups and \(N\) is the kernel of \(\pi\text{.}\)
Assume there exists a morphism of groups \(\phi \colon G \to H\) such that \(N = \ker{\phi}\text{.}\) Let \(g \in G\) be given. For all \(n \in N\text{,}\)
\begin{equation*}
\phi\left(gng^{-1}\right) = \phi(g)\phi(n)\phi(g)^{-1} = \phi(g)\phi(g)^{-1} = 1
\end{equation*}
implies \(gng^{-1} \in N\text{.}\) Hence if there exists a morphism of groups \(\phi \colon G \to H\) such that \(N = \ker{\phi}\text{,}\) then for all \(g \in G\text{,}\) \(gNg^{-1} \subseteq N\text{.}\)
Assume for all \(g \in G\text{,}\) \(gNg^{-1} \subseteq N\text{.}\) Let \(n \in N\) be given. By assumption,
\begin{equation*}
g^{-1}ng \in g^{-1}N\left(g^{-1}\right)^{-1} = g^{-1}Ng \subseteq N
\end{equation*}
and thus
\begin{equation*}
n = \left(gg^{-1}\right)n\left(gg^{-1}\right) = g\left(g^{-1}ng\right)g^{-1} \in gNg^{-1}\text{.}
\end{equation*}
Hence if for all \(g \in G\text{,}\) \(gNg^{-1} \subseteq N\text{,}\) then for all \(g \in G\text{,}\) \(gNg^{-1} = N\text{.}\)
Assume for all \(g \in G\text{,}\) \(gNg^{-1} = N\text{.}\) Let \(a,b \in G\) be given. First we observe that for all \(g \in G\text{,}\) \(g \in N\) if and only if \(aga^{-1} \in N\text{.}\) The forward direction holds by assumption, while the converse holds because \(aga^{-1} \in N\) implies
\begin{equation*}
g = a^{-1}\left(aga^{-1}\right)a \in a^{-1}Na = N
\end{equation*}
Then
\begin{align*}
a \equiv_\ell b \pmod{N} \amp\iff a^{-1}b \in N\\
\amp\iff a\left(a^{-1}b\right)a^{-1} \in N\\
\amp\iff ba^{-1} \in N\\
\amp\iff b \equiv_r a \pmod{N}\\
\amp\iff a \equiv_r \pmod{N}
\end{align*}
Hence if for all \(g \in G\text{,}\) \(gNg^{-1} = N\text{,}\) then \(N \unlhd G\text{.}\)