Skip to main content
Logo image

Chapter 12 Factor-Groups Computations and Simple Groups

Example 12.1.

Assume \(G\) is a group. The trivial subgroup, \(\langle 1 \rangle\text{,}\) is trivially normal because for all \(g \in G\text{,}\)
\begin{equation*} g1g^{-1} = gg^{-1} = 1\text{.} \end{equation*}
The canonical projection \(\pi \colon G \to G/\langle 1 \rangle\) is surjective by definition and injective because
\begin{equation*} \ker{\pi} = \langle 1 \rangle = \{1\}\text{.} \end{equation*}
Therefore \(\pi\) is an isomorphism between \(G\) and \(G/\langle 1 \rangle\text{.}\)

Example 12.2.

Assume \(G,H\) are groups. When we defined the product \(G \times H\text{,}\) we defined the surjective projection maps \(\pi_G \colon G\times H \to G\) and \(\pi_H \colon G \times H \to H\text{.}\) We show that the use of \(\pi\) for projection here products coincides with the usage of \(\pi\) for the projection to the quotient.
For every \(g \in G\text{,}\) we obtain an element \((g,1) \in G \times H\text{.}\) We observe there is a natural map
\begin{align*} \mu_G \colon G \amp\to G \times H\\ x \amp \mapsto (x,1) \end{align*}
that is a morphism of groups because
\begin{equation*} \mu_G(x_1x_2) = (x_1x_2, 1) = (x_1,1)(x_2,1) = \mu_G(x_1)\mu_G(x_2)\text{.} \end{equation*}
This morphism of groups is injective because
\begin{equation*} \mu_G(x) = (x,1) = (1,1) \iff x = 1\text{.} \end{equation*}
The image of \(G\) under \(\mu_G\) is the subgroup
\begin{equation*} G \times 1 = \left\{(x,1) \;\middle\vert\; x \in G\right\} \leq G \times H\text{,} \end{equation*}
and we note that \(G \cong G \times 1\text{.}\) This allows us to identify a copy of \(G\) inside \(G \times H\text{.}\) For all \((g,h) \in G \times H\text{,}\)
\begin{align*} (g,h) \in \ker{\pi_H} \amp\iff \pi_H(g,h) = h = 1\\ \amp\iff h = 1\\ \amp\iff (g,h) \in G \times 1 \end{align*}
Since the projection \(\pi_H \colon G \times H \to H\) is surjective with kernel \(G \times 1\) and thus
\begin{equation*} H \cong G\times H / G \times 1 \end{equation*}
by CorollaryΒ 11.16. Note this implies that \(G \times 1\) is normal in \(G \times H\text{.}\)
By a symmetric argument, we observe that \(1 \times H = \ker{\pi_G}\text{,}\) \(H \cong 1 \times H \unlhd G \times H\text{,}\) and \(G \times H / 1 \times H \cong G\text{.}\)

Remark 12.3.

If \(G\) is additive (resp. \(H\) is additive), then we write \(0 \times H\) (resp. \(G \times 0\)) instead of \(1 \times H\) (resp. \(G \times 1\)).

Example 12.4.

Assume \(G\) and \(H\) are groups. Let \(G^\prime \unlhd G\) and \(H^\prime \unlhd H\) be given. The subgroup \(G^\prime \times H^\prime\) is normal in \(G \times H\) because for all \((g^\prime,h^\prime) \in G^\prime \times H^\prime\text{,}\) for all \((a,b) \in G \times H\text{,}\)
\begin{equation*} (a,b)(g^\prime,h^\prime)(a,b)^{-1} = \left(ag^\prime a^{-1}, bh^\prime b^{-1}\right) \in G^\prime \times H^\prime\text{.} \end{equation*}
Consider the quotient of \(G \times H\) by the subgroup \(G^\prime \times H^\prime \leq G \times H\text{.}\) We prove that \((G \times H)/(G^\prime \times H^\prime) \cong G/G^\prime \times H/H^\prime\text{.}\)
To accomplish this, we first need a morphism between these two groups. Instead of constructing this directly, we start with
\begin{align*} \pi_{G^\prime} \times \pi_{H^\prime} \colon G \times H \amp\to G/G^\prime \times H/H^\prime\\ (x,y) \amp\mapsto (xG^\prime,yH^\prime)\text{.} \end{align*}
This is a morphism of groups because
\begin{align*} \pi_{G^\prime} \times \pi_{H^\prime}((x_1,y_1)(x_2,y_2)) \amp= \pi_{G^\prime} \times \pi_{H^\prime}(x_1x_2, y_1y_2)\\ \amp= \left((x_1x_2)G^\prime, (y_1y_2)H^\prime\right)\\ \amp= \left((x_1G^\prime)(x_2G^\prime), (y_1H^\prime)(y_2H^\prime)\right)\\ \amp= \left(x_1G^\prime,y_1H^\prime)(x_2G^\prime,y_2H^\prime\right)\\ \amp= \pi_{G^\prime} \times \pi_{H^\prime}(x_1,y_1) \pi_{G^\prime} \times \pi_{H^\prime}(x_2,y_2) \end{align*}
We observe that for all \((x,y) \in G^\prime \times H^\prime\text{,}\)
\begin{equation*} \pi_{G^\prime} \times \pi_{H^\prime}(x,y) = \left(xG^\prime, yH^\prime\right) = \left(1G^\prime, 1H^\prime\right) = 1\text{.} \end{equation*}
Hence by the universal property for the quotient, there exists a unique morphism of groups \(\phi \colon (G \times H)/(G^\prime \times H^\prime) \to G/G^\prime \times H/H^\prime\) that makes the following diagram commute.
We prove that \(\phi\) is an isomorphism. For injectivity, it suffices to observe that for all \((x,y) \in G\text{,}\)
\begin{align*} \phi\left((x,y)G^\prime \times H^\prime\right) = 1 \amp\iff \pi_{G^\prime} \times \pi_{H^\prime}(x,y) = 1\\ \amp\iff (x,y) \in G^\prime \times H^\prime\\ \amp\iff (x,y)G^\prime \times H^\prime = 1\text{.} \end{align*}
For surjectivity, let \(\left(xG^\prime, yH^\prime\right) \in G/G^\prime \times H/H^\prime\) be given. By definition of the quotient,
\begin{align*} \left(xG^\prime, yH^\prime\right) \amp= \pi_{G^\prime} \times \pi_{H^\prime}(x,y)\\ \amp=\phi \circ \pi_{G^\prime \times H^\prime}(x,y)\\ \amp= \phi\left((x,y)G^\prime \times H^\prime\right)\text{.} \end{align*}
Therefore \(\phi \colon (G\times H)/(G^\prime \times H^\prime) \to G/G^\prime \times H/H^\prime\) is an isomorphism.

Example 12.5. Quotients of Cyclic Groups are Cyclic.

Assume \(G\) is a cyclic group. For all \(H \leq G\text{,}\) \(G/H\) is cyclic.
Assume \(H \leq G\text{.}\) Note that \(G\) is abelian because it is cyclic, and thus \(H \unlhd G\text{.}\) Let \(g \in G\) be a generator. For every \(y \in G/H\text{,}\) there exists \(x \in G\) such that \(y = xH\text{.}\) There exists \(n \in \Z\) such that \(g^n = x\) and thus
\begin{equation*} y = xH = g^nH = (gH)^n\text{.} \end{equation*}
Therefore \(G/H = \langle gH \rangle\) is cyclic.