Fix \(m,n \in \N\text{.}\) An \(m \times n\) matrix
\begin{equation*}
M = \begin{bmatrix}
a_{1,1} \amp a_{1,2} \amp \cdots \amp a_{1,n}\\
a_{2,1} \amp a_{2,2} \amp \cdots \amp a_{2,n}\\
\vdots \amp \vdots \amp \ddots \amp \vdots\\
a_{m,1} \amp a_{m,2} \amp \cdots \amp a_{m,n}
\end{bmatrix}
\end{equation*}
defines a function \(T \colon \R^n \to \R^m\) via the matrix-vector multiplication
\begin{align*}
T(x_1,x_2,\ldots,x_n) \amp=
\begin{bmatrix}
a_{1,1} \amp a_{1,2} \amp \cdots \amp a_{1,n}\\
a_{2,1} \amp a_{2,2} \amp \cdots \amp a_{2,n}\\
\vdots \amp \vdots \amp \ddots \amp \vdots\\
a_{m,1} \amp a_{m,2} \amp \cdots \amp a_{m,n}
\end{bmatrix}
\begin{bmatrix}x_1\\x_2\\\vdots\\x_n\end{bmatrix}\\
\amp= \begin{bmatrix}
a_{1,1}x_1 + a_{1,2}x_2 + \cdots a_{1,n}x_n\\
a_{2,1}x_1 + a_{2,2}x_2 + \cdots a_{2,n}x_n\\
\vdots\\
a_{m,1}x_1 + a_{m,2}x_2 + \cdots a_{m,n}x_n)
\end{bmatrix}
\end{align*}
We know from linear algebra that matrix-vector multiplication is linear. In particular, if \(\mathbf{v},\mathbf{w} \in \R^n\text{,}\) then
\begin{align*}
T(\mathbf{v} + \mathbf{w}) \amp= M(\mathbf{v} + \mathbf{w})\\
\amp= M\mathbf{v} + M\mathbf{w}\\
\amp= T(\mathbf{v}) + T(\mathbf{w})
\end{align*}
Hence the transformation \(T \colon \R^n \to \R^m\) induced by a matrix \(M \in \operatorname{M}_{m \times n}(\R)\) is a morphism of (additive) groups.