Let \(G\) be a group. We prove that \(G\) is isomorphic to a subgroup of \(S_G\text{.}\) For each \(g \in G\text{,}\) define the function
\begin{align*}
\Psi(g) \colon G \amp\to G\\
x \amp \mapsto xg^{-1}
\end{align*}
This is a bijection because for all \(x \in G\text{,}\)
\begin{equation*}
\Psi(g) \circ \Psi\left(g^{-1}\right)(x) = \Psi(g)\left(xg\right) = xgg^{-1} = x
\end{equation*}
and
\begin{equation*}
\Psi\left(g^{-1}\right) \circ \Psi(g)(x) = \Psi\left(g^{-1}\right)\left(xg^{-1}\right) = xg^{-1}g = x\text{.}
\end{equation*}
This defines a morphism of sets
\begin{align*}
\Psi \colon G \amp\to S_G\\
g \amp\mapsto \Psi(g)
\end{align*}
that is surjective onto its image.
To see that \(\Psi\) is injective, suppose there exist \(g_1,g_2 \in G\) such that \(\Psi(g_1) = \Psi(g_2)\text{.}\) By definition, for every \(x \in G\text{,}\) \(\Psi(g_1)(x) = \Psi(g_2)(x)\text{.}\) Taking \(x = 1\) yields
\begin{equation*}
g_1^{-1} = \Psi(g_1)(1) = \Psi(g_2)(1) = g_2^{-1}\text{,}
\end{equation*}
and thus \(g_1 = g_2\text{.}\) Hence \(\Psi\) is injective.
Finally, let \(g_1, g_2 \in G\) be given. Since multiplication is associative on \(G\text{,}\) we observe that for all \(x \in G\text{,}\)
\begin{align*}
\Psi(g_1 g_2)(x) \amp= x\left(g_1g_2\right)^{-1}\\
\amp= \left(xg_2^{-1}\right)g_1^{-1}\\
\amp= \Psi(g_1)\left(xg_2^{-1}\right)\\
\amp= \Psi(g_1) \circ \Psi(g_2)(x)\\
\amp= \left(\Psi(g_1) \circ \Psi(g_2)\right)(x)\text{.}
\end{align*}
Hence \(\Psi(g_1 g_2) = \Psi(g_1) \circ \Psi(g_2)\text{.}\) Therefore \(\Psi\) is an isomorphism between \(G\) and its image,
\begin{equation*}
\Psi(G) = \left\{\Psi(g) \;\middle\vert\; g \in G\right\} \subseteq S_G\text{.}
\end{equation*}