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1 Binary Operations
Definition 1.1 Binary Operation. Assume X is a set. A binary opera-
tion on X is a function ∗ : X ×X → X.

As a matter of convenience, we typically write x1 ∗ x2 instead of ∗(x1, x2).
♢

Definition 1.2 Associative Binary Operation. We say a binary operation,
∗, on a set, X, is associative if for all x1, x2, x3 ∈ X,

(x1 ∗ x2) ∗ x3 = x1 ∗ (x2 ∗ x3).

♢
Definition 1.3 Commutative Binary Operation. We say a binary oper-
ation, ∗, on a set, X, is commutative if for all x1, x2 ∈ X,

x1 ∗ x2 = x2 ∗ x1.

We say a binary operation is non-commutative if it is not a commutative
operation. ♢
Example 1.4 For any of the familiar sets of numbers

• The natural numbers, N,

• The integers, Z,

• The rationals, Q,

• The reals, R,

• The complex numbers, C

the familiar arithmetic operations + and × are associative, commutative oper-
ations. □
Definition 1.5 Assume Σ is a set. A word with letters from Σ is a string
consisting of elements from Σ.

We write Σ∗ for the set of all possible words with letters from Σ. Note that
this set contains the empty word, ε. ♢
Example 1.6 Let Σ = {0, 1}. A word with letters from Σ is a string of 0’s
and 1’s, such as

1010101010110011111.

We can define the concatenation operation on the words of Σ by joining
the two strings together to form a single word. The result of concatenating the
words w1 = 01010 and w2 = 01011100 is

w1w2 = 0101001011100



Note that this operation is non-commutative:

w2w1 = 0101110001010 ̸= 0101001011100 = w1w2

□
Definition 1.7 Identity. We say a binary operation, ∗, on a set, X, has an
identity if there exists an element e ∈ X such that for all x ∈ X,

e ∗ x = x and x ∗ e = x

♢
Example 1.8

• The operation + on one of the usual number systems (N,Z,Q,R,C) has
identity 0 because for all numbers x, x+ 0 = x = 0 + x.

• The operation + on one of the usual number systems (N,Z,Q,R,C) has
identity 1 because for all numbers x, x× 1 = x = 1× x.

• The operation of concatenation on words has the empty string, ε, as its
identity.

□
Definition 1.9 Inverse. Assume ∗ is a binary operation on the set X with
identity e ∈ X. We say x ∈ X has an inverse (with respect to ∗) if there
exists y ∈ X such that

x ∗ y = e and y ∗ x = e

For a general operation, we typically write x−1 for the inverse of x. If the
operation is addition, then we write −x instead. ♢
Example 1.10 For each of the number systems except the natural numbers
(Z,Q,R,C), the operation + admits an inverse for every element x, which is
just the negative −x.

For the number systems Q, R, and C, the operation × also admits an
inverse for every non-zero element, x. In the reals (hence also the rationals),
the inverse is x−1 = 1/x. For the complex numbers, the inverse is slightly more
complicated:

(a+ bi)−1 =
1

a+ bi
=

a− bi

(a+ bi)(a− bi)
=

a− bi

a2 − (bi)2
=

a− bi

a2 + b2

□

2 Monoids
Definition 2.1 Monoid. A monoid is a set, M , equipped with a binary
operation ∗ : M ×M → M that is associative and has an identity, eM . ♢
Example 2.2

• The binary operation + endows each of the number systems
(N,Z,Q,R,C) with the structure of an additive monoid.

• The binary operation × endows each of the number systems
(N,Z,Q,R,C) with the structure of a multiplicative monoid.
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• The concatenation operation endows Σ∗ with the structure of a multi-
plicative monoid, where we think of concatenation, w1w2, playing the
role of multiplication.

□

3 Groups
Definition 3.1 Group. A set G equipped with an operation ∗ is a group if

1. G is a Monoid under ∗, andevery g ∈ G has an inverse under ∗

If the operation is commutative, then we say the group is abelian. ♢
Example 3.2 All of the usual number systems are groups under addition
except for N because the positive integers do not have inverses that are elements
of N. For example, for all n ∈ N,

1 + n ≥ 1 + 0 = 1 > 0

implies that 1 does not have an inverse in N. Since addition is commutative, we
say that each of (Z,+), (Q,+), (R,+), and (C,+) are additive abelian groups.

□
Example 3.3 For each of the number systems, multiplication never provides
a group structure. This is because each one contains the additive identity 0,
which does not have an inverse. We can prove this by contradiction: Assume
for contradiction 0 has a multiplicative inverse. Then

1 = 0× 0−1 = 0

a contradiction.
However, if we remove the additive identity, then we do obtain a group

structure for Q, R, and C under multiplication. These are commonly referred
to as the multiplicative group of units Q×, R×, and C×. Note these are
all examples of abelian groups. □

4 Rings
Definition 4.1 Ring. A set A equipped with two operations + and × is said
to be a ring if

1. A is an abelian group under +,

2. A is a monoid under ×,

3. These two structures are compatible in the sense that for all a1, a2, a3 ∈ A,

a1 × (a2 + a3) = a1 × a2 + a1 × a3, and
(a1 + a2)× a3 = a1 × a3 + a2 × c2

We say A is a commutative ring if the operation × is commutative. ♢
Definition 4.2 Field. A set F equipped with two operations + and × is
said to be a field if (F,+×) is a ring and (F \ {0},×) is a group. ♢
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Remark 4.3 The condition that (F \{0},×) is a group just ensures that every
non-zero element of F has a multiplicative inverse.
Example 4.4 All of the number systems except N form rings under addition
and multiplication. This follows from the fact that multiplication distributes
over addition. This means (Z,+,×), (Q,+,×), (R,+,×), and (C,+,×) are all
commutative rings.

The ring (Z,+,×) is not a field because, for example, the multiplicative
inverse of 2 is 1/2 ̸∈ Z. However, (Q,+,×), (R,+,×), and (C,+,×) are all
fields. □
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