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1 Binary Operations

Definition 1.1 Binary Operation. Assume X is a set. A binary opera-
tion on X is a function *: X x X — X.
As a matter of convenience, we typically write x1 * xo instead of *(x1,x2).

O

Definition 1.2 Associative Binary Operation. We say a binary operation,
%, on a set, X, is associative if for all x1,x2, 23 € X,

(z1 % T2) x x3 = 1 * (Tg * x3).

O

Definition 1.3 Commutative Binary Operation. We say a binary oper-
ation, *, on a set, X, is commutative if for all z1,z5 € X,

T1 *Tg = T *T71.
We say a binary operation is non-commutative if it is not a commutative

operation. O

Example 1.4 For any of the familiar sets of numbers
e The natural numbers, N,
e The integers, Z,
e The rationals, Q,
e The reals, R,
e The complex numbers, C

the familiar arithmetic operations + and x are associative, commutative oper-
ations. 0

Definition 1.5 Assume ¥ is a set. A word with letters from X is a string
consisting of elements from X.

We write 3* for the set of all possible words with letters from ». Note that
this set contains the empty word, ¢. O

Example 1.6 Let ¥ = {0,1}. A word with letters from 3 is a string of 0’s
and 1’s, such as
1010101010110011111.

We can define the concatenation operation on the words of ¥ by joining
the two strings together to form a single word. The result of concatenating the
words wy = 01010 and w9 = 01011100 is

wiwz = 0101001011100



Note that this operation is non-commutative:
wow; = 0101110001010 % 0101001011100 = wyws

]

Definition 1.7 Identity. We say a binary operation, %, on a set, X, has an
identity if there exists an element e € X such that for all z € X,

exxr =1 and rTxe=2x

Example 1.8

o The operation + on one of the usual number systems (N, Z, Q, R, C) has
identity 0 because for all numbers z, x +0 =2 =0+ z.

o The operation + on one of the usual number systems (N, Z,Q, R, C) has
identity 1 because for all numbers z, z x 1 =z =1 x x.

e The operation of concatenation on words has the empty string, ¢, as its
identity.

O

Definition 1.9 Inverse. Assume * is a binary operation on the set X with
identity e € X. We say « € X has an inverse (with respect to ) if there
exists y € X such that

Txy=e and y*r=cec

For a general operation, we typically write ! for the inverse of . If the
operation is addition, then we write —z instead. O

Example 1.10 For each of the number systems except the natural numbers
(Z,Q,R,C), the operation + admits an inverse for every element x, which is
just the negative —z.

For the number systems Q, R, and C, the operation X also admits an
inverse for every non-zero element, x. In the reals (hence also the rationals),
the inverse is 7! = 1/x. For the complex numbers, the inverse is slightly more
complicated:

1 a—bi a—bi a—bi

._1_ _
(b)) = e T G b=t @i a0

2 Monoids

Definition 2.1 Monoid. A monoid is a set, M, equipped with a binary
operation x: M x M — M that is associative and has an identity, ey;. O

Example 2.2

e The binary operation + endows each of the number systems
(N,Z,Q,R,C) with the structure of an additive monoid.

e The binary operation x endows each of the number systems
(N,Z,Q,R,C) with the structure of a multiplicative monoid.



e The concatenation operation endows ¥* with the structure of a multi-
plicative monoid, where we think of concatenation, wyws, playing the
role of multiplication.

O

3 Groups

Definition 3.1 Group. A set G equipped with an operation x is a group if
1. G is a Monoid under *, andevery g € G has an inverse under *

If the operation is commutative, then we say the group is abelian. O

Example 3.2 All of the usual number systems are groups under addition
except for N because the positive integers do not have inverses that are elements
of N. For example, for all n € N,

1+n>14+0=1>0

implies that 1 does not have an inverse in N. Since addition is commutative, we
say that each of (Z,+), (Q,4), (R,+), and (C,+) are additive abelian groups.
O

Example 3.3 For each of the number systems, multiplication never provides
a group structure. This is because each one contains the additive identity 0,
which does not have an inverse. We can prove this by contradiction: Assume
for contradiction 0 has a multiplicative inverse. Then

1=0x0"1=0

a contradiction.

However, if we remove the additive identity, then we do obtain a group
structure for Q, R, and C under multiplication. These are commonly referred
to as the multiplicative group of units Q*, R*, and C*. Note these are
all examples of abelian groups. O

4 Rings

Definition 4.1 Ring. A set A equipped with two operations + and X is said
to be a ring if

1. A is an abelian group under +,

2. A is a monoid under X,

3. These two structures are compatible in the sense that for all a1, as, a3 € A,

ay X (a2 + a3z) = a1 X az + a1 X ag, and

(a1+a2)xa3:a1xa3+a2x02

We say A is a commutative ring if the operation x is commutative. ¢

Definition 4.2 Field. A set F equipped with two operations + and X is
said to be a field if (F,+x) is a ring and (F \ {0}, x) is a group. O



Remark 4.3 The condition that (F'\ {0}, x) is a group just ensures that every
non-zero element of F' has a multiplicative inverse.

Example 4.4 All of the number systems except N form rings under addition
and multiplication. This follows from the fact that multiplication distributes
over addition. This means (Z, +, x), (Q,+, x), (R, +, x), and (C, +, x) are all
commutative rings.

The ring (Z,+, X) is not a field because, for example, the multiplicative
inverse of 2 is 1/2 ¢ Z. However, (Q,+, x), (R,+, x), and (C,+, x) are all
fields. |



	Binary Operations
	Monoids
	Groups
	Rings

