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Cylindrical Coordinates

Cylindrical Coordinate System

Extending the polar coordinate system for R2 to include a height,
(r , θ, z), yields a coordinate system for R3 known as the
cylindrical coordinate system.



Cylindrical Coordinates

Converting from Cylindrical Coordinates

Given a point (r , θ, z) in the cylindrical coordinate system, we
obtain the Cartesian coordinates using

x = r cos(θ) y = r sin(θ) z = z



Cylindrical Coordinates

Converting to Cylindrical Coordinates

Given a point (x , y , z) in Cartesian coordinates, we obtain the
cylindrical coordinates using

r2 = x2 + y2 tan(θ) =
y

x
z = z

provided x ̸= 0.



Cylindrical Coordinates

Exercise

1. Plot the point with cylindrical coordinates (2, 2π/3, 1) and
find its representation in Cartesian coordinates.

2. Find cylindrical coordinates of the point (3,−3,−7).



Cylindrical Coordinates

Solution (Part 1)

In Cartesian coordinates, (2, 2π/3, 1) is (−1,
√
3, 1).

x y

z
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2, 2π3 , 1
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2, 2π3 , 0

)
2pi
3



Cylindrical Coordinates

Solution (Part 2)

To convert (3,−3, 7) to cylindrical, use

r =
√
18 = 3

√
2

θ = arctan

(
−3

3

)
= arctan(−1) = −π

4

z = −7

Make θ positive by adding 2π to obtain
(
3
√
2, 7π4 ,−7

)
.



Cylindrical Coordinates

Exercise

Describe the surface given in cylindrical coordinates by z = r .



Cylindrical Coordinates

Solution

The surface z = r is the cone

z2 = x2 + y2

x y

z



Triple Integrals in Cylindrical Coordinates

Suppose E is a solid region of type 1 and D is its projection onto
the xy -plane. If f is continuous on

E = {(x , y , z) | (x , y) ∈ D, ρ(x , y) ≤ z ≤ σ(x , y)} , and
D = {(r , θ) | α ≤ θ ≤ β, g(θ) ≤ r ≤ h(θ)} ,

then ∫∫∫
E
f (x , y , z) dV

=

∫ β

α

∫ h(θ)

g(θ)

∫ σ(r cos(θ),r sin(θ))

ρ(r cos(θ),r sin(θ))
f (r cos(θ), r sin(θ), z)r dz dr dθ



Triple Integrals in Cylindrical Coordinates

Exercise

Let E be the solid under z = 4− x2 − y2 and above z = 0.
Evaluate

∫∫∫
E x2 dV .



Triple Integrals in Cylindrical Coordinates

Solution (Part 1)

The projection of E onto z = 0 is the disc of radius 2

D = {(r , θ) | 0 ≤ r ≤ 2, 0 ≤ θ ≤ 2π}

and thus

E =
{
(r , θ, z)

∣∣ 0 ≤ r ≤ 2, 0 ≤ θ ≤ 2π, 0 ≤ z ≤ 4− r2
}



Triple Integrals in Cylindrical Coordinates

Solution (Part 2)

∫ 2π

0

∫ 2

0

∫ 4−r2

0
r3 cos2(θ) dz dr dθ

=

∫ 2π

0

∫ 2

0

(
−r5 + 4r3

)
cos2 (θ) dr dθ

=
16

3

∫ 2π

0
cos2 (θ) dθ =

16π

3



Triple Integrals in Cylindrical Coordinates

Exercise

A solid E lies within the part of the cylinder x2 + y2 = 1 with
y ≥ 0, below z = 4, and above z = 1− x2 − y2. The density at
any point is proportional to its distance from the axis of the
cylinder. Find the mass of E .



Triple Integrals in Cylindrical Coordinates

Solution (Part 1)

The projection of E onto the z = 0 is the half-disc

D = {(r , θ) | 0 ≤ r ≤ 1, 0 ≤ θ ≤ π}

so that

E =
{
(r , θ, z)

∣∣ 0 ≤ r ≤ 1, 0 ≤ θ ≤ π, 1− r2 ≤ z ≤ 4
}



Triple Integrals in Cylindrical Coordinates

Solution (Part 2)

The axis of the cylinder is the z-axis, so there exists a constant, k ,
such that the density is

ρ(r , θ, z) = kr



Triple Integrals in Cylindrical Coordinates

Solution (Part 3)

m =

∫ π

0

∫ 1

0

∫ 4

1−r2
kr2 dz dr dθ = k

∫ π

0

∫ 1

0

(
r4 + 3r2

)
dr dθ

=
6k

5

∫ π

0
dθ =

6kπ

5



Triple Integrals in Cylindrical Coordinates

Exercise

Evaluate ∫ 2

−2

∫ √
4−x2

−
√
4−x2

∫ 2

√
x2+y2

(
x2 + y2

)
dz dy dx



Triple Integrals in Cylindrical Coordinates

Solution

Recognize the projection of E onto z = 0 as the disc of radius 2,
so in cylindrical coordinates:∫ 2π

0

∫ 2

0

∫ 2

r
r3 dz dr dθ =

∫ 2π

0
dθ

∫ 2

0

(
−r4 + 2r3

)
dr

= 2π

(
8

5

)
=

16π

5
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