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General Regions

Definition (Plane Region of Type I)

A region D in the xy -plane is said to be of Type I if there exist
continuous functions g and h such that

D = {(x , y) | a ≤ x ≤ b, g(x) ≤ y ≤ h(x)}

y = h(x)

y = g(x)x = a x = b



General Regions

Theorem

Assume

D = {(x , y) | a ≤ x ≤ b, g(x) ≤ y ≤ h(x)}

is of type I. If f is continuous on D, then∫∫
R
f (x , y) dA =

∫ b

a

∫ h(x)

g(x)
f (x , y) dy dx



General Regions

Exercise

Let D be the region bounded by y = 2x2 and y = 1 + x2.
Evaluate

∫∫
D(x + 2y) dA.



General Regions

Solution (Part 1)

First, recognize D is a region of type I

D =
{
(x , y)

∣∣ −1 ≤ x ≤ 1, 1 + x2 ≤ y ≤ 2x2
}

y = 2x2

y=1+x2

•(−1, 2) •(1, 2)



General Regions

Solution (Part 2)

∫∫
D
(x + 2y) dA =

∫ 1

−1

∫ 1+x2

2x2
(x + 2y) dy dx

=

∫ 1

−1

[
−3x4 − x3 + 2x2 + x + 1

]
dx

= −3

∫ 1

0
x4 dx + 2

∫ 1

0
x2 dx +

∫ 1

0
dx =

32

15



General Regions

Definition (Plane Region of Type II)

A region D in the xy -plane is said to be of Type II if there exist
continuous functions g and h such that

D = {(x , y) | c ≤ y ≤ d , g(y) ≤ x ≤ h(y)}

x = g(y)

x = h(y)

y = c

y = d



General Regions

Theorem

Assume

D = {(x , y) | c ≤ y ≤ d , g(y) ≤ x ≤ h(y)}

is of type II. If f is continuous on D, then∫∫
R
f (x , y) dA =

∫ d

c

∫ h(y)

g(y)
f (x , y) dx dy



General Regions

Exercise

Let D be the region bounded by the line y = x − 1 and the
parabola y2 = 2x + 6. Evaluate

∫∫
D xy dA.



General Regions

Solution (Part 1)

First, recognize D is a region of type II

D =

{
(x , y)

∣∣∣∣ −2 ≤ y ≤ 4,
1

2
y2 − 3 ≤ x ≤ y + 1

}

x = y2/2− 3

x = y + 1

•(−1,−2)

•(5, 4)



General Regions

Solution (Part 2)

Now evaluate the iterated integral∫∫
D
xy dA =

∫ 4

−2

∫ y+1

y2

2
−3

xy dx dy = 36



General Regions

Exercise

Find the volume of the tetrahedron bounded by the planes
x + 2y + z = 2, x = 2y , x = 0, and z = 0.



General Regions

Solution (Part 1)

First, observe the intersection of the planes x + 2y + z = 2,
x = 2y , x = 0 with the plane z = 0 produces a triangle in the
xy -plane

x

y

z

•
• •

O (0, 1, 0)(
1, 12 , 0

)

•

y

x

y=− x
2 +1

y=
x
2•O

•(0, 1)

•
(
1, 12

)

Figure: The tetrahedron (left) and its base (right).
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General Regions

Solution
▶ The base of the tetrahedron is a region of type I

D =
{
(x , y)

∣∣∣ 0 ≤ x ≤ 1,
x

2
≤ y ≤ −x

2
+ 1

}

▶ At each point (x , y) in D, the height of the solid is
f (x , y) = 2− x − 2y .

▶ Therefore volume of the solid is V =
∫∫

D f (x , y) dA.
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General Regions

Solution (Part 3)

Now evaluate the iterated integral

V =

∫ 1

0

∫ − 1
2
x+1

x
2

(2− x − 2y) dy dx =
1

3



Changing the Order of Integration

Exercise

Attempt to evaluate ∫ 1

0

∫ 1

x
sin(y2) dy dx

What goes wrong? How can we fix it?



Changing the Order of Integration

Solution (Part 1)

▶ We cannot find an elementary anti-derivative for sin(y2).

▶ We can for y sin(y2); use u = y2, du/2 = dy :∫
y sin(y2) dy =

1

2

∫
sin(u) du = −1

2
cos(y2) + C

▶ This tells us we should attempt to reverse the order of
integration.
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Changing the Order of Integration

Solution (Part 2)

Draw the region, D, of type I over which we want to integrate.

Rewrite as a region of type II:

D = {(x , y) | 0 ≤ y ≤ 1, 0 ≤ x ≤ y}

x

y

y = 1

y
=
x

•O

•(1, 1)•(0, 1)

x = 0
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Changing the Order of Integration

Solution (Part 3)

Rewrite the integral∫∫
D
sin(y2) dA =

∫ 1

0

∫ y

0
sin(y2) dx dy

=

∫ 1

0
y sin(y2) dy

=
1− cos(1)

2



Properties of Double Integrals

Assume f and g are integrable on D, and c, m and M are
constants.

Linearity

∫∫
D
[f (x , y) + g(x , y)] dA =

∫∫
D
f (x , y) dA+

∫∫
D
g(x , y) dA∫∫

D
cf (x , y) dA = c

∫∫
d
f (x , y) dA



Properties of Double Integrals

Area

The area of the region D is

A(D) =

∫∫
D
1 dA



Properties of Double Integrals

Order

If g(x , y) ≤ f (x , y) on D, then∫∫
D
g(x , y) dA ≤

∫∫
D
f (x , y) dA

In particular, if m ≤ f (x , y) ≤ M, then

mA(D) ≤
∫∫

D
f (x , y) dA ≤ MA(D)



Properties of Double Integrals

Additivity

If D = D1 ∪ D2 and the regions D1 and D2 overlap only on the
boundary, then∫∫

D
f (x , y) dA =

∫∫
D1

f (x , y) dA+

∫∫
D2

f (x , y) dA



Properties of Double Integrals

Exercise

Let D be the disc of radius 2 about the origin. Estimate∫∫
D
esin(x) cos(y) dA



Properties of Double Integrals

Solution
▶ Take the conservative bound −1 ≤ sin(x), cos(y) ≤ 1.

▶ Observe this implies −1 ≤ sin(x) cos(y) ≤ 1.

▶ Hence 1
e ≤ esin(x) cos(y) ≤ e.

▶ Therefore

A(D)

e
=

4π

e
≤

∫∫
D
esin(x) cos(y) ≤ 4πe = A(D)e.
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