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Review of the Definite Integral

Assume f is a continuous function on the interval [a, b]. Recall
that a partition of [a, b] is a choice of n + 1 points

x0 = a < x1 < x2 < · · · < xn−1 < xn = b

that determine n subintervals of width ∆x = (b − a)/n

∆x ∆x ∆x

a x1 x2 xn−1 b· · ·



Review of the Definite Integral

Given a partition, we approximate the area under f on [xi−1, xi ] by
choosing a sample point xi−1 ≤ x∗i ≤ xi and constructing a
rectangle of height f (x∗i ). The sum of the areas of these
rectangles, called the Riemann sum,

n∑
i=1

f (x∗i )∆x

approximates the area under f on [a, b].



Review of the Definite Integral
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a x1 ··· xi x∗
i

xi+1 ··· b=xn



Review of the Definite Integral

We define the area between f and the x-axis to be the definite
integral ∫ b

a
f (x) dx = lim

n→∞

n∑
i=1

f (x∗i )∆x



Volumes and Double Integrals

▶ Our goal is to mimic this construction to measure the volume
of a solid bounded by a region in the xy -plane and the surface
z = f (x , y).

▶ General regions in the plane are difficult to handle, so we start
with the two-dimensional analogue of closed sets, called
rectangles.

▶ Rectangles are exactly what you think they are, but require a
precise definition in order for us to work with them.
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Volumes and Double Integrals

Definition (Rectangle)

A rectangle in R2 is the product of closed sets [a, b] and [c , d ]

R = [a, b]× [c , d ] = {(x , y) | a ≤ x ≤ b, c ≤ y ≤ d}

x

y x = a x = b

y = c

y = d

(a, c)
•

(a, d)
•

(b, c)
•

(b, d)
•



Volumes and Double Integrals

To partition the rectangle R = [a, b]× [c , d ],

1. Choose a partition x0 = a < x1 < · · · < xm = b of [a, b],

2. Choose a partition y0 = c < y1 < · · · < yn = d of [c, d ],

3. Take the product of these partitions

{(xi , yj) | 0 ≤ i ≤ m, 1 ≤ j ≤ n}
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Volumes and Double Integrals

The product of these partitions creates a grid of sub-rectangles in
the plane, each with area ∆A = ∆x∆y
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Volumes and Double Integrals

For each sub-rectangle Ri ,j = [xi−1, xi ]× [yj−1, yj ], choose a

sample point
(
x∗i ,j , y

∗
i ,j

)

•
(xi−1, yj−1)

•
(xi , yj−1)

•
(xi−1, yj)

•
(xi , yj)

•(
x∗i ,j , y

∗
i ,j

)



Volumes and Double Integrals

▶ Construct a rectangular prism on the rectangle Ri ,j with

height f
(
x∗i ,j , y

∗
i ,j

)
.

▶ The volume,

Vi ,j = f
(
x∗i ,j , y

∗
i ,j

)
∆x∆y = f

(
x∗i ,j , y

∗
i ,j

)
∆A,

approximates the volume of the solid with base the rectangle
Ri ,j and top the portion of the surface

{(x , y , f (x , y)) | xi−1 ≤ x ≤ xi , yj−1 ≤ y ≤ yj}
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Volumes and Double Integrals

Definition (Double Riemann Sum)

We approximate the volume, V , of the solid bounded by the
xy -plane and the surface z = f (x , y) by the double Riemann sum
of these volumes

V ≈
m∑
i=1

n∑
j=1

f
(
x∗i ,j , y

∗
i ,j

)
∆A =

n∑
j=1

m∑
i=1

f
(
x∗i ,j , y

∗
i ,j

)
∆A

Note the order of summation indicates summing volumes either by
columns, then rows or by rows, then columns.
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Volumes and Double Integrals

Definition (Double Integral)

The double integral of f over the rectangle R is∫∫
R
f (x , y) dA = lim

m,n→∞

m∑
i=1

n∑
j=1

f
(
x∗ij , y

∗
ij

)
∆A

provided the limit exists.



Volumes and Double Integrals

Volume

If f (x , y) ≥ 0, then the volume V of the solid that lies above the
rectangle R and below the surface z = f (x , y) is

V =

∫∫
R
f (x , y) dA



Volumes and Double Integrals

Exercise

Let R = [0, 2]× [0, 2] and f (x , y) = 16− x2 − 2y2. Estimate∫∫
R f (x , y) dA using four equal squares with sample points the

upper right corner of each square.



Volumes and Double Integrals

Solution (Part 1)

The partition of R with sample points marked is given below.

x

y

•
(1, 1)

•
(1, 2)

•
(2, 1)

•
(2, 2)



Volumes and Double Integrals

Solution (Part 2)

The height of the rectangular prism at each sample point is

f (1, 1) = 16− (1)2 − 2(1)2 = 13

f (1, 2) = 16− (1)2 − 2(2)2 = 7

f (2, 1) = 16− (2)2 − 2(1)2 = 10

f (2, 2) = 16− (2)2 − 2(2)2 = 4



Volumes and Double Integrals

Solution (Part 3)

As the area of each sub-rectangle is ∆A = 1, the double Riemann
sum is

V ≈
2∑

i=1

2∑
j=1

f
(
x∗i ,j , y

∗
i ,j

)
∆A

= f (1, 1) + f (1, 2) + f (2, 1) + f (2, 2)

= 13 + 7 + 10 + 4 = 34



The Midpoint Rule

Theorem (Midpoint Rule)

If the double integral of f (x , y) over the rectangle R exists, then∫∫
R
f (x , y) dA ≈

m∑
i=1

n∑
j=1

f (x̄i , ȳj)∆A

where x i and y j are the midpoints of [xi−1, xi ] and [yj−1, yj ],

x̄i =
xi−1 + xi

2
ȳj =

yj=1 + yj
2



Iterated Integrals

Definition (Iterated Integral)

Assume f is a function of two variables and the double integral of
f over R = [a, b]× [c , d ] exists. An iterated integral has one of
the following forms∫ b

a

∫ d

c
f (x , y) dy dx =

∫ b

a

[∫ d

c
f (x , y) dy

]
dx∫ d

c

∫ b

a
f (x , y) dx dy =

∫ d

c

[∫ b

a
f (x , y) dx

]
dy



Iterated Integrals

Evaluate the iterated integrals∫ 3

0

∫ 2

1
x2y dy dx and

∫ 2

1

∫ 3

0
x2y dx dy .



Iterated Integrals

Solution (Part 1)

∫ 3

0

∫ 2

1
x2y dy dx =

∫ 3

0
x2

[∫ 2

1
y2 dy

]
dx =

∫ 3

0

4− 1

2
x2 dx

=
3

2

∫ 3

0
x2 dx =

3

2

(
1

3

)(
33 − 03

)
=

27

2



Iterated Integrals

Solution (Part 2)

∫ 2

1

∫ 3

0
x2y dx dy =

∫ 2

1
y

[∫ 3

0
x2 dx

]
dy =

∫ 2

1

27− 0

3
y dy

= 9

∫ 2

1
y dy = 9

(
1

2

)(
22 − 12

)
=

27

2



Iterated Integrals

Theorem (Fubini)

If f is continuous on the rectangle R = [a, b]× [c , d ], then∫∫
R
f (x , y) dA =

∫ b

a

∫ d

c
f (x , y) dy dx =

∫ d

c

∫ b

a
f (x , y) dx dy

More generally, this is true if we assume f is bounded on R, f is
discontinuous only on a finite number of smooth curves, an the
iterated integrals exist.



Iterated Integrals

Exercise

Let R = [0, 2]× [1, 2]. Evaluate∫∫
R
(x − 3y2) dA



Iterated Integrals

Solution

∫∫
R
(x − 3y2) dA =

∫ 2

0

∫ 2

1
(x − 3y2) dy dx

=

∫ 2

0

[
(2− 1)x − 3

8− 1

3

]
dx =

∫ 2

0
(x − 7) dx

=
4− 0

2
− 7(2− 0) = −12



Iterated Integrals

Exercise

Let R = [1, 2]× [0, π]. Evaluate
∫∫

R y sin(xy) dA.



Iterated Integrals

Solution

∫∫
R
y sin(xy) =

∫ π

0
y

[∫ 2

1
sin(xy) dx

]
dy

=

∫ π

0
y

(
− cos(2y) + cos(y)

y

)
dy

=

∫ π

0
cos(y) dy −

∫ π

0
cos(2y) dy = 0



Iterated Integrals

Exercise

Find the volume of the solid S bounded by x2 + 2y2 + z = 16, the
planes x = 2 and y = 2, and the three coordinate planes.



Iterated Integrals

Solution (Part 1)

First, we sketch the region in the xy -plane. The intersection of
x = 2 and y = 2 with the xy -plane form perpendicular lines that
intersect the xz-plane at (2, 0, 0) and the yz-plane at (0, 2, 0),
respectively. This tells us R is [0, 2]× [0, 2].

x y

z

R



Iterated Integrals

Solution (Part 2)

Rewrite the surface as z = f (x , y) = 16− x2 − 2y2 so the desired
volume is ∫∫

R
(16− x2 − 2y2) dA



Iterated Integrals

Solution

∫∫
R
(16− x2 − 2y2) dA =

∫ 2

0

∫ 2

0

(
16− x2 − 2y2

)
dx dy

=

∫ 2

0

(
32− 8

3
− 4y2

)
dy = 64− 16

3
− 4

(
8

3

)
= 64− 48

3
= 64− 16 = 48



Iterated Integrals

Assume R = [a, b]× [c , d ]. If f (x , y) = g(x)h(y), then∫∫
R
f (x , y) dA =

∫ d

c

[∫ b

a
g(x)h(y) dx

]
dy

=

∫ d

c

[
h(y)

∫ b

a
g(x) dx

]
dy

=

∫ b

a
g(x) dx

∫ d

c
h(y) dy



Iterated Integrals

Exercise

Compute the volume of the solid formed by f (x , y) = sin(x) cos(y)
over R = [0, π/2]× [0, π/2].



Iterated Integrals

Solution

∫∫
R
f (x , y) dA =

∫ π
2

0
sin(x) dx

∫ π
2

0
cos(y) dy

= cos(0) sin
(π
2

)
= 1



Average Value of a Function

Recall from §6.5

Definition

The average value of an integrable function, f (x), on the interval
[a, b] is

f =
1

b − a

∫ b

a
f (x) dx .



Average Value of a Function over a Plane Region

Definition

The average value of an integrable function f over a region R is

f =
1

area of R

∫∫
R
f (x , y) dA.



Average Value

Exercise

Find the average value of the function z = 2− x − y over the
square R = [0, 2]× [0, 2].



Average Value

Solution

f =
1

4

∫ 2

0

[∫ 2

0
(2− x − y) dx

]
dy

=
1

4

∫ 2

0
(4− 2− 2y) dy

=
8− 4− 4

4
= 0


	Review of the Definite Integral
	Volumes and Double Integrals
	The Midpoint Rule
	Iterated Integrals
	Average Value

