
Vector Functions
13.3 Arc Length and Curvature

B. Farman

Mathematics and Statistics
Louisiana Tech University

Calculus III



Arc Length

Suppose we have a differentiable vector-valued function,
r(t) = ⟨f (t), g(t), h(t)⟩, and we would like to measure the length
of the space curve over the interval [a, b].
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Arc Length

We start by partitioning the interval [a, b] into n subintervals using
the points

t0 = a < t1 < t2 < · · · < tn−1 < tn = b

and considering the segment of the curve over the i th subinterval
[ti−1, ti ].
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Arc Length

Since we do not know how to measure the length of the space
curve on the subinterval [ti−1, ti ], we replace it with a line
segment. The simplest line segment to choose is the one that
connects the points r(ti−1) and r(ti ). However, we need to be
slightly more clever to make things work nicely.

•(f (ti ), g(ti ), h(ti ))

•(f (ti−1), g(ti−1), h(ti−1))



Arc Length

Instead of using the endpoint directly, we use linear approximations
to its coordinates.

f (ti ) ≈ f ′(ti−1)(ti − ti−1) + f (ti−1) = f ′(ti−1)∆t + f (ti−1)

g(ti ) ≈ g ′(ti−1)(ti − ti−1) + g(ti−1) = g ′(ti−1)∆t + g(ti−1)

h(ti ) ≈ h′(ti−1)(ti − ti−1) + h(ti−1) = h′(ti−1)∆t + h(ti−1)



Arc Length

Using the linear approximation, the difference between the
coordinates is

f ′(ti )∆t + f (ti−1)− f (ti−1) = f ′(ti−1)∆t

g ′(ti )∆t + g(ti−1)− g(ti−1) = g ′(ti−1)∆t

h′(ti )∆t + h(ti−1)− h(ti−1) = h′(ti−1)∆t



Arc Length

Hence the length of the line segment that approximates the space
curve over [ti−1, ti ] is

Li =

√
(f ′(ti−1)∆t)2 + (g ′(ti−1)∆t)2 + (h′(ti−1)∆t)2

=
√
[f ′(ti−1)2 + g ′(ti−1)2 + h′(ti−1)2]∆t2

=
√

f ′(ti−1)2 + g ′(ti−1)2 + h′(ti−1)2∆t =
∣∣r′(ti−1)

∣∣∆t

We approximate the length of the space curve r over [a, b] by∑n
i=1 Li .



Arc Length

Arc Length

The length, L, of the space curve r(t) over the interval [a, b] is

L = lim
n→∞

n∑
i=1

∣∣r′(t)∣∣∆t =

∫ b

a

∣∣r′(t)∣∣ dt



Arc Length

Remark

While we focused on the construction for functions r : R → R3,
there is nothing special about 3-dimensional space. In general, if
r(t) = ⟨f1(t), f2(t), . . . , fn(t)⟩, then the length of the curve C in
Rn over [a, b] is ∫ b

a

∣∣r ′(t)∣∣ dt



Arc Length

Exercise

Find the length of the arc of the circular helix

r(t) = cos(t)i+ sin(t)j+ tk

from (1, 0, 0) to (1, 0, 2π).



Arc Length

Solution

∫ 2π

0

√
sin2(t) + cos2(t) + 12 dt =

√
2

∫ 2π

0
dt

= 2
√
2π.



Arc Length

Remark

A curve space curve has different parameterizations, but the arc
length is independent of the parameterization.

Exercise

The helix r(t) = ⟨cos(t), sin(t), t⟩ could also be parameterized as
s(t) = ⟨cos(2t), sin(2t), 2t⟩, 0 ≤ t ≤ π. It is easy to check∫ π
0 |s′(t)| dt = 2

√
2π.



Arc Length

Remark

A curve space curve has different parameterizations, but the arc
length is independent of the parameterization.

Exercise

The helix r(t) = ⟨cos(t), sin(t), t⟩ could also be parameterized as
s(t) = ⟨cos(2t), sin(2t), 2t⟩, 0 ≤ t ≤ π. It is easy to check∫ π
0 |s′(t)| dt = 2

√
2π.



The Arc Length Function

Definition (Arc Length Function)

Suppose C is a space curve given by r(t) = ⟨f (t), g(t), h(t)⟩ on
[a, b], where r′ is continuous and C is traversed exactly once on
[a, b]. The arc length function is

s(t) =

∫ t

a

∣∣r′(u)∣∣ du
As a consequence of part 1 of the Fundamental Theorem of
calculus, s ′(t) = |r′(t)|



The Arc Length Function

In some instances, it is possible to rewrite the parameter t in terms
of the arc length, s. Being able to parameterize a curve with
respect to arc length is sometimes valuable because the arc
length is invariant of the parameterization. For instance, if we can
rewrite r in terms of s, then r(s) represents the position vector s
units along the curve.



The Arc Length Function

Exercise

Re parameterize the helix r(t) = ⟨cos(t), sin(t), t⟩ with respect to
arc length measured from (1, 0, 0) in the direction of increasing t.



The Arc Length Function

Solution

We already know |r′(t)| =
√
2, so

s =
√
2

∫ t

0
du =

√
2t ⇐⇒ t =

s√
2

and thus

r(s) =

〈
cos

(
s√
2

)
, sin

(
s√
2

)
,
s√
2

〉



Curvature

Definition (Smooth)

A parameterization, r(t), is called smooth on an interval I if r′ is
continuous and r′(t) ̸= 0 on I . A curve is called smooth if it has a
smooth parameterization.



Curvature

Definition (Curvature)

Let C be a smooth curve. The curvature of C ,

κ =

∣∣∣∣dTds
∣∣∣∣ = ∣∣∣∣dT/ dtds/ dt

∣∣∣∣ = ∣∣∣∣T′(t)

r′(T )

∣∣∣∣ = |T′(t)|
|r′(t)|

measures how quickly the curve changes direction at a point.



Curvature

Exercise

Show the curvature of a circle of radius a is 1/a.



Curvature

Solution

Take the parameterization r(t) = ⟨a cos(t), a sin(t)⟩. Compute

r′(t) = ⟨−a sin(t), cos(t)⟩
T(t) = ⟨− sin(t), cos(t)⟩
T′(t) = ⟨− cos(t),− sin(t)⟩

κ =
|T′(t)|
|r′(t)|

=
1

a



Curvature

Theorem

Assume C is a smooth curve parameterized by r. The curvature of
C is

κ(t) =
|r′(t)× r′′(t)|

|r′(t)|3



Curvature

Exercise

Find the curvature of r(t) = ⟨t, t2, t3⟩ at a generic point and at
(0, 0, 0).



Curvature

Solution

Compute

r ′(t) = ⟨1, 2t, 3t2⟩
r ′′(t) = ⟨0, 2, 6t⟩

r ′ × r ′′ =

∣∣∣∣∣∣
i j k
1 2t 3t2

0 2 6t

∣∣∣∣∣∣ = ⟨6t2,−6t, 2⟩



Curvature

Solution (Part 2)

∣∣r ′ × r ′′
∣∣ = 2

√
9t4 + 9t2 + 1∣∣r ′∣∣3 = √

9t4 + 4t2 + 1
3

κ(t) = 2

√
9t4 + 9t2 + 1

(9t4 + 4t2 + 1)3

κ(0) = 2



Curvature

Theorem

Given a smooth plane curve y = f (x), the parameterization
r(x) = ⟨x , f (x)⟩ yields

κ(x) =
|f ′′(x)|

[1 + f ′(x)2]3/2



Curvature

Exercise

Find the curvature of the parabola y = x2 at the points (0, 0),
(1, 1), and (2, 4).



Curvature

Solution

Compute

f ′(x) = 2x f ′′(x) = 2 κ(x) =
2

(1 + 4x2)3/2

κ(0) = 2 κ(1) =
2

25

√
5 κ(2) =

2

289

√
17



The Normal and Binormal Vectors

Definition (Principal Unit Normal Vector)

Let C be a smooth curve parameterized by r. For any point where
κ ̸= 0, the principal unit normal vector (or unit normal) is

N(t) =
T′(t)

|T′(t)|

and indicates the direction in which the curve is turning at this
point.



The Normal and Binormal Vectors

Definition (Binormal Vector)

For a smooth curve, C , the binormal vector

B(t) = T(t)×N(t)

is a unit vector perpendicular to both T and N.



The Normal and Binormal Vectors

Remark

The three orthogonal unit vectors T, N, and B provide what is
known as the TNB frame. These vectors form a basis for R3,
similar to i, j, and k.



The Normal and Binormal Vectors

Exercise

Find the unit normal and binormal vectors for the circular helix
r(t) = ⟨cos(t), sin(t), t⟩.



The Normal and Binormal Vectors

Solution

r′(t) = ⟨− sin(t), cos(t), 1⟩

T(t) =
1√
2
⟨− sin(t), cos(t), 1⟩

T′(t) =
1√
2
⟨− cos(t),− sin(t), 0⟩

N(t) = ⟨− cos(t),− sin(t), 0⟩



The Normal and Binormal Vectors

Solution

B(t) =

∣∣∣∣∣∣∣
i j k

− sin(t)√
2

cos(t)√
2

1√
2

− cos(t)√
2

− sin(t)√
2

0

∣∣∣∣∣∣∣
=

√
2

2
⟨sin(t),− cos(t), 1⟩



The Normal and Binormal Vectors

Exercise

Find the unit tangent, unit normal, and binormal vectors and the
curvature for r(t) = ⟨t,

√
2 ln(t), 1/t⟩.



The Normal and Binormal Vectors

Solution (Part 1)

r′(t) =
1

t2

〈
t2,

√
2t,−1

〉
∣∣r′(t)∣∣ = t2 + 1

t2

T(t) =
1

t2 + 1

〈
t2,

√
2t,−1

〉
T′(t) = − 2t

(t2 + 1)2
⟨t2,

√
2t,−1⟩+ 1

t2 + 1

〈
2t,

√
2, 0

〉



The Normal and Binormal Vectors

Solution (Part 2)

T(1) =
1

2
⟨1,

√
2,−1⟩

T′(1) =
1

2
⟨1, 0, 1⟩

N(1) =
1√
2
⟨1, 0, 1⟩

B(1) = T(1)×N(1) =
1

2
⟨1,−

√
2,−1⟩



The Normal and Binormal Vectors

Solution (Part 3)

κ(1) =
|T(1)|
|r(1)|

=

√
22

2

=

√
2

4



The Normal and Binormal Vectors

Definition (Normal Plane)

The plane determined by the vectors N and B and a point P on
the curve C is called the normal plane of C at P.



The Normal and Binormal Vectors

Definition (Osculating Plane)

The plane determined by the vectors T and N and a point P on
the curve C is called the osculating plane of C at P.



The Normal and Binormal Vectors

Definition (Circle of Curvature)

The circle of curvature or osculating circle of C at P is the
circle in the osculating plane that passes through P with radius
1/κ and center adistance 1/κ from P along the vector N. The
center of the circle is called the center of curvature of C at P.



The Normal and Binormal Vectors

Exercise

Find the equations of the normal plane and osculating plane of the
helix r(t) = ⟨cos(t), sin(t), t⟩ at (0, 1, π/2).



The Normal and Binormal Vectors

Solution (Part 1)

When t = π/2

T
(π
2

)
=

1√
2
⟨−1, 0, 1⟩

N
(π
2

)
= ⟨0,−1, 0⟩

B
(π
2

)
=

√
2

2
⟨1, 0, 1⟩



The Normal and Binormal Vectors

Solution (Part 2)

For the normal plane, use the normal vector√
2T(π/2) = ⟨−1, 0, 1⟩ to obtain the equation of the plane

0 =
〈
−1, 0, 1⟩ · ⟨x , y − 1, z − π

2

〉
= −x + z − π

2



The Normal and Binormal Vectors

Solution (Part 3)

For the osculating plane, use the normal vector√
2B(π/2) = ⟨1, 0, 1⟩ to obtain the equation of the plane

0 =
〈
1, 0, 1⟩ · ⟨x , y − 1, z − π

2

〉
= x + z − π

2



The Normal and Binormal Vectors

Exercise

Find and graph the osculating circle y = x2 at the origin.



The Normal and Binormal Vectors

Solution

At the origin, T(0) = ⟨1, 0⟩, N(0) = ⟨0, 1⟩, and κ = 2. Hence the
osculating circle is

x2 +

(
y − 1

2

)2

=
1

4

x

y



Torsion

Definition (Torsion)

The torsion of a curve is

τ = −dB

ds
·N = −dB/ dt

ds/ dt
·N = −B′(t) ·N(t)

|r′(t)|



Torsion

Theorem

The torsion of the curve given by the vector-valued function r is

τ(t) =
[r′(t)× r′′(t)] · r′′′(t)

|r′(t)× r′′(t)|2



Torsion

Exercise

Find the torsion of the helix r(t) = ⟨cos(t), sin(t), t⟩.



Torsion

Solution

∣∣r′(t)∣∣ = √
2 N(t) = ⟨− cos(t),− sin(t), 0⟩

B′(t) =
1√
2
⟨cos(t), sin(t), 0⟩ B′(t) ·N = − 1√

2

τ = −−1/
√
2√

2
=

1

2
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