Vectors and the Geometry of Space 12.4 The Cross Product

B. Farman

Mathematics and Statistics Louisiana Tech University

Calculus III

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Definition (Cross Product)

The **cross product** of $\mathbf{u} = \langle u_1, u_2, u_3 \rangle$ and $\mathbf{v} = \langle v_1, v_2, v_3 \rangle$ is a vector $\mathbf{u} \times \mathbf{v}$ that is orthogonal to both \mathbf{u} and \mathbf{v} , and has magnitude equal to area of the parallelogram formed by \mathbf{u} and \mathbf{v} .

<ロト <回ト < 注ト < 注ト

$$\begin{array}{c|c}
 u \\
 v \\
 \theta \\
 u \\
 \end{array}$$

э

ヘロト 人間ト 人目ト 人目下

イロト イポト イヨト イヨト

・ロト ・ 同 ト ・ 三 ト ・

If $\mathbf{u} = \langle u_1, u_2, u_3 \rangle$ and $\mathbf{v} = \langle v_1, v_2, v_3 \rangle$, then

$$\mathbf{u} \times \mathbf{v} = \langle u_2 v_3 - u_3 v_2, u_3 v_1 - u_1 v_3, u_1 v_2 - u_2 v_1 \rangle$$
$$|\mathbf{u} \times \mathbf{v}| = |\mathbf{u}| |\mathbf{v}| \sin(\theta)$$

э

・ロト ・四ト ・モト ・モト

Corollary

For vectors $\mathbf{u} = \langle u_1, u_2, u_3 \rangle$ and $\mathbf{v} = \langle v_1, v_2, v_3 \rangle$, the following are equivalent.

- 1. The vectors \mathbf{u} and \mathbf{v} are parallel.
- 2. The angle, θ , measured from **u** to **v** is either 0 or π ,
- 3. The cross product of **u** and **v** has zero magnitude, $|\mathbf{u} \times \mathbf{v}| = |\mathbf{u}| |\mathbf{v}| \sin(\theta) = 0.$
- 4. The cross product of **u** and **v** is the zero vector, $\mathbf{u} \times \mathbf{v} = \mathbf{0}$.

イロト イヨト イヨト

Definition $(2 \times 2 \text{ Determinant})$

Assume $\mathbf{u} = \langle u_1, u_2 \rangle$ and $\mathbf{v} = \langle v_1, v_2 \rangle$. The **determinant** associated to \mathbf{u} and \mathbf{v} is the signed area of the parallelogram formed by \mathbf{u} and \mathbf{v} .

Figure: Positive determinant (left) and negative determinant (right).

(日)

The determinant associated to $\langle u_1, u_2 \rangle$ and $\langle v_1, v_2 \rangle$ is

$$\begin{vmatrix} u_1 & u_2 \\ v_1 & v_2 \end{vmatrix} = u_1 v_2 - u_2 v_1$$

æ

▲口 ▶ ▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶ .

Definition $(3 \times 3 \text{ Determinant})$

The determinant associated to the vectors $\mathbf{u} = \langle u_1, u_2, u_3 \rangle$, $\mathbf{v} = \langle v_1, v_2, v_3 \rangle$, and $\mathbf{w} = \langle w_1, w_2, w_3 \rangle$ is the signed volume of the parallelepiped formed by these three vectors.

・ ロ ト ・ 一型 ト ・ ヨ ト ・

The determinant associated to the vectors $\mathbf{u} = \langle u_1, u_2, u_3 \rangle$, $\mathbf{v} = \langle v_1, v_2, v_3 \rangle$, and $\mathbf{w} = \langle w_1, w_2, w_3 \rangle$ is computed recursively by

$$\begin{vmatrix} u_1 & u_2 & u_3 \\ v_1 & v_2 & v_3 \\ w_1 & w_2 & w_3 \end{vmatrix} = u_1 \begin{vmatrix} v_2 & v_3 \\ w_2 & w_3 \end{vmatrix} - u_2 \begin{vmatrix} v_1 & v_3 \\ w_1 & w_3 \end{vmatrix} + u_3 \begin{vmatrix} v_1 & v_2 \\ w_1 & w_2 \end{vmatrix}$$

(日)

The cross product of $\mathbf{u} = \langle u_1, u_2, u_3 \rangle$ and $\mathbf{v} = \langle v_1, v_2, v_3 \rangle$ can be computed using the symbolic 3×3 determinant

$$\begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ u_1 & u_2 & u_3 \\ v_1 & v_2 & v_3 \end{vmatrix} = \mathbf{i} \begin{vmatrix} u_2 & u_3 \\ v_2 & v_3 \end{vmatrix} - \mathbf{j} \begin{vmatrix} u_1 & u_3 \\ v_1 & v_3 \end{vmatrix} + \mathbf{k} \begin{vmatrix} u_1 & u_2 \\ v_1 & v_2 \end{vmatrix}$$

イロト イヨト イヨト

Exercise

Compute $\langle 1, 3, 4 \rangle \times \langle 2, 7, -5 \rangle$.

Ξ.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶

Solution

$$\begin{array}{l} \langle 1,3,4\rangle \times \langle 2,7,-5\rangle = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 1 & 3 & 4 \\ 2 & 7 & -5 \end{vmatrix} \\ = (-15 - 28)\mathbf{i} - (-5 - 8)\mathbf{j} + (7 - 6)\mathbf{k} \\ = \langle -43,13,1\rangle \end{array}$$

æ

・ロト ・四ト ・ヨト ・ヨト

Exercise

Find a vector perpendicular to the plane that contains the points P(1, 4, 6), Q(-2, 5, -1), and R(1, -1, 1).

A D > A P > A D > A D >

Solution

If the plane contains the points, then it must contain vectors between any pair of points. Form two vectors, say,

$$ec{PQ} = \langle -3, 1, -7
angle$$
 and $ec{QR} = \langle 3, -6, 2
angle$

then take the cross product

$$\vec{PQ} \times \vec{QR} = \langle -40, -15, 15 \rangle$$

(日)

Exercise

Find the area of the triangle with vertices P(1,4,6), Q(-2,5,-1), and R(1,-1,1).

э

ヘロト ヘロト ヘヨト ヘヨト

The Cross Product of Two Vectors

Solution

Observe the parallelogram formed by the vectors \overrightarrow{PR} and \overrightarrow{PQ} is twice the size of the triangle, so the area, A, of the desired triangle is

$$A = \frac{1}{2} \left| \vec{PQ} \times \vec{PR} \right| = \frac{5\sqrt{82}}{2} \approx 22.6384628453435$$

The standard basis vectors i, j, and k satisfy

$\mathbf{i} \times \mathbf{j} = \mathbf{k}$	$\mathbf{j} imes \mathbf{k} = \mathbf{i}$	$\mathbf{k} imes \mathbf{i} = \mathbf{j}$
$\mathbf{j} imes \mathbf{i} = -\mathbf{k}$	$\mathbf{k} imes \mathbf{j} = -\mathbf{i}$	$\mathbf{i} imes \mathbf{k} = -\mathbf{j}$

イロト イポト イヨト イヨト

If \mathbf{u} , \mathbf{v} , and \mathbf{w} are vectors and c is a scalar, then

4. $(\mathbf{u} + \mathbf{v}) \times \mathbf{w} = \mathbf{u} \times \mathbf{w} + \mathbf{v} \times \mathbf{w}$ 1. $\mathbf{u} \times \mathbf{v} = -\mathbf{v} \times \mathbf{u}$ 2. $(c\mathbf{u}) \times \mathbf{v} = c(\mathbf{u} \times \mathbf{v}) =$ 5. $\mathbf{u} \cdot (\mathbf{v} \times \mathbf{w}) = (\mathbf{u} \times \mathbf{v}) \cdot \mathbf{w}$ $\mathbf{u} \times (c\mathbf{v})$ 6. 1

3.
$$\mathbf{u} \times (\mathbf{v} + \mathbf{w}) = \mathbf{u} \times \mathbf{v} + \mathbf{u} \times \mathbf{w}$$

$$(\mathbf{v} \times \mathbf{w}) = (\mathbf{u} \times \mathbf{v})^{*} \mathbf{w}$$

 $(\mathbf{v} \times \mathbf{w}) = (\mathbf{u} \cdot \mathbf{v})\mathbf{w}$
 $(\mathbf{u} \cdot \mathbf{w})\mathbf{v} - (\mathbf{u} \cdot \mathbf{v})\mathbf{w}$

・ロト ・ 同ト ・ ヨト ・ ヨト

Definition

The scalar triple product of the vectors $\mathbf{u} = \langle u_1, u_2, u_3 \rangle$, $\mathbf{v} = \langle v_1, v_2, v_3 \rangle$, and $\mathbf{w} = \langle w_1, w_2, w_3 \rangle$ is precisely the determinant associated to these vectors

$$\mathbf{u} \cdot (\mathbf{v} \times \mathbf{w}) = \begin{vmatrix} u_1 & u_2 & u_3 \\ v_1 & v_2 & v_3 \\ w_1 & w_2 & w_3 \end{vmatrix}$$

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

Definition (Coplanar)

The vectors ${\bf u},\,{\bf v},\, {\rm and}\,\,{\bf w}$ are ${\bf coplanar}$ if they all lie in the same plane.

э

・ロト ・四ト ・ヨト ・ヨト

Definition (Coplanar)

The vectors \mathbf{u} , \mathbf{v} , and \mathbf{w} are **coplanar** if they all lie in the same plane.

Theorem

The vectors \mathbf{u} , \mathbf{v} , and \mathbf{w} are coplanar if and only if $\mathbf{u} \cdot (\mathbf{v} \times \mathbf{w}) = 0$.

(日)

Exercise

Show the vectors $\mathbf{u} = \langle 1, 4, -7 \rangle$, $\mathbf{v} = \langle 2, -1, 4 \rangle$, and $\mathbf{w} = \langle 0, -9, 18 \rangle$ are coplanar.

Solution

$$\begin{vmatrix} 1 & 4 & -7 \\ 2 & -1 & 4 \\ 0 & -9 & 18 \end{vmatrix} = (-18 + 36) - 4(36 - 0) - 7(-18 - 0)$$
$$= 18 - 144 + 126$$
$$= 0$$

æ

・ロト ・ 四ト ・ ヨト ・ ヨト

Definition (Torque)

Consider a force ${\bf F}$ acting on a rigid body at a point given by a position vector ${\bf r}.$ The torque relative to the origin is

 $\boldsymbol{\tau} = \mathbf{r} \times \mathbf{F}.$

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

Exercise

A bolt is tightened by applying a 40-N force to a 0.25-m wrench at a 75° angle as depicted below. Find the magnitude of the torque about the center of the bolt.

(日)

Application: Torque

Solution

The magnitude of the torque is

$$\begin{aligned} \boldsymbol{\tau} &| = |\mathbf{r} \times \mathbf{F}| = |\mathbf{r}| |\mathbf{F}| \sin(\theta) \\ &= 10 \sin\left(\frac{5\pi}{12}\right) \approx 9.65925826289068 \, \text{N} \cdot \text{m} \end{aligned}$$

æ

<ロト <回ト < 回ト < 回ト