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The Dot Product of Two Vectors

Definition (The Dot Product)

Assume u = ⟨u1, u2, . . . , un⟩ and v = ⟨v1, v2, . . . , vn⟩ are vectors.
The dot product (or scalar product or inner product) of u and
v is the scalar

u · v = u1v1 + u2v2 + · · ·+ unvn.



The Dot Product of Two Vectors

Exercise

Compute the following:

⟨2, 4⟩ · ⟨3,−1⟩

⟨−1, 7, 4⟩ ·
〈
6, 2,−1

2

〉
(i+ 2j− 3k) · (2j− k)



The Dot Product of Two Vectors

Solution

⟨2, 4⟩ · ⟨3,−1⟩ = 6− 4 = 2

⟨−1, 7, 4⟩ ·
〈
6, 2,−1

2

〉
= −6 + 14− 2 = 6

(i+ 2j− 3k) · (2j− k) = 0 + 4 + 3 = 7



The Dot Product of Two Vectors

Theorem (Properties of the Dot Product)

If u, v, and w are vectors and c is a scalar, then

1. u · u = |u|2

2. u · v = v · u
3. u · (v +w) = u · v + u ·w
4. c(u · v) = (cu) · v = u · (cv)
5. 0 · u = 0



The Dot Product of Two Vectors

Theorem

Assume u and v are vectors. If θ is the angle measured from u to
v, then

u · v = |u| |v| cos(θ) ⇐⇒ cos(θ) =
u · v
|u| |v|

u

v

θ



The Dot Product of Two Vectors

Exercise

Assume u and v are vectors,

▶ u has magnitude 4,

▶ v has magnitude 6, and

▶ the angle between u and v is π/3.

Find u · v.



The Dot Product of Two Vectors

Solution

u · v = 24 cos
(π
3

)
= 24

(
1

2

)
= 12.



The Dot Product of Two Vectors

Exercise

Find the angle between u = ⟨2, 2,−1⟩ and v = ⟨5,−3, 2⟩.



The Dot Product of Two Vectors

Solution

θ = arccos

(
2√

9
√
38

)
≈ 1.46 radians



The Dot Product of Two Vectors

Definition (Orthogonal)

We say the vectors u and v are orthogonal (or perpendicular) if
the angle between them is π/2.

Theorem

The vectors u and v are orthogonal if and only if

0 = cos
(π
2

)
=

u · v
|v| |u|

⇐⇒ 0 = u · v



The Dot Product of Two Vectors

Definition (Orthogonal)

We say the vectors u and v are orthogonal (or perpendicular) if
the angle between them is π/2.

Theorem

The vectors u and v are orthogonal if and only if

0 = cos
(π
2

)
=

u · v
|v| |u|

⇐⇒ 0 = u · v



The Dot Product of Two Vectors

Exercise

Verify that 2i+ 2j− k is perpendicular to 5i− 4j+ 2k.



The Dot Product of Two Vectors

Solution

(2i+ 2j− k) · (5i− 4j+ 2k) = 10− 20 + 10 = 0



Direction Angles and Direction Cosines

Definition (Direction Angles)

Assume v = ⟨a, b, c⟩ is a non-zero, three-dimensional vector. The
direction angles, α, β, and γ, are the angles that v makes with
the positive x-axis, y -axis, and z-axis, respectively.

x
y

z

α β

γ



Direction Angles and Direction Cosines

Definition (Direction Cosines)

Assume v = ⟨a, b, c⟩ is a non-zero, three-dimensional vector. The
direction cosines of v are

cos(α) =
v · i
|v| |i|

cos(β) =
v · i
|v| |j|

cos(γ) =
v · i
|v| |k|

=
a

|v|
=

b

|v|
=

c

|v|



Direction Angles and Direction Cosines

Corollary

Assume v = ⟨a, b, c⟩ is a non-zero, three-dimensional vector. The
vector

⟨cos(α), cos(β), cos(γ)⟩ =
〈

a

|v|
,
b

|v|
,
c

|v|

〉
=

1

|v|
v

is the unit vector in the direction of v.



Direction Angles and Direction Cosines

Exercise

Find the direction angles of the vector v = ⟨1, 2, 3⟩.



Direction Angles and Direction Cosines

Solution

α = arccos

(
1√
14

)
≈ 74.4986404331◦

β = arccos

(
2√
14

)
≈ 57.6884667626◦

γ = arccos

(
3√
14

)
≈ 36.6992252005◦



Projections

Definition

Assume u and v are vectors.

▶ The orthogonal projection of u onto v is the vector,
projv u, parallel to v that is closest to u.

▶ The scalar component of u in the direction of v, compv u,
is the signed magnitude of projv u.



Projections

Definition

Assume u and v are vectors.

▶ The orthogonal projection of u onto v is the vector,
projv u, parallel to v that is closest to u.

▶ The scalar component of u in the direction of v, compv u,
is the signed magnitude of projv u.



Projections

There are three possible arrangements of u and v with compv u
positive, zero, and negative, respectively.

θ

u

vprojv u

u

v

projv u

θu

v

projv u



Projections

Theorem (Projection Formulas)

If u and v are vectors, then

▶ compv u =
u · v
|v|

▶ projv u = (compv u)
v

|v|
=

(
u · v
|v|2

)
v



Projections

Theorem (Projection Formulas)

If u and v are vectors, then

▶ compv u =
u · v
|v|

▶ projv u = (compv u)
v

|v|
=

(
u · v
|v|2

)
v



Projections

Exercise

Find the orthogonal projection and scalar component of
u = ⟨1, 1, 2⟩ along v = ⟨−2, 3, 1⟩.



Projections

Solution

compv u =
u · v
|v|

=
3√
14

projv u = compv u
v

|v|
=

3

14
⟨−2, 3, 1⟩



Application: Work

Definition (Work)

Assume a constant force vector, F = P⃗R, moves an object from P
to Q. The displacement vector is D = PQ. If θ is the angle
measured from D to F, then the work done by F is

W = (|F| cos(θ)) |D| = |F| |D| cos(θ) = F ·D

θ

P Q

R

S

F

D



Application: Work

Exercise

A wagon is pulled a distance of 100 m along a horizontal path by a
constant force of 70 N. The handle of the wagon is held at an
angle 35◦ above the horizontal. Find the work done by the force.



Application: Work

Solution

W = (|F| cos(θ)) |D| = 70 cos

(
7π

36

)
100 ≈ 5734.06431002 J



Application: Work

Exercise

A force is given by vector F = 3i+ 4j+ 5k and moves a particle
from the point (2, 1, 0) to the point (4, 6, 2). Find the work done.



Application: Work

Solution

The work done is

W = F ·D
= ⟨3, 4, 5⟩ · ⟨4− 2, 6− 1, 2− 0⟩
= ⟨3, 4, 5⟩ · ⟨2, 5, 2⟩
= 6 + 20 + 10

= 36
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