Vectors and the Geometry of Space 12.3 The Dot Product

B. Farman

Mathematics and Statistics Louisiana Tech University

Calculus III

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Definition (The Dot Product)

Assume $\mathbf{u} = \langle u_1, u_2, \dots, u_n \rangle$ and $\mathbf{v} = \langle v_1, v_2, \dots, v_n \rangle$ are vectors. The **dot product** (or **scalar product** or **inner product**) of \mathbf{u} and \mathbf{v} is the scalar

$$\mathbf{u}\cdot\mathbf{v}=u_1v_1+u_2v_2+\cdots+u_nv_n.$$

Compute the following:

$$\begin{array}{l} \langle 2,4\rangle \cdot \langle 3,-1\rangle \\ \\ \langle -1,7,4\rangle \cdot \left\langle 6,2,-\frac{1}{2}\right\rangle \\ \\ (\mathbf{i}+2\mathbf{j}-3\mathbf{k}) \cdot (2\mathbf{j}-\mathbf{k}) \end{array}$$

æ

$$\langle 2, 4 \rangle \cdot \langle 3, -1 \rangle = 6 - 4 = 2$$
$$\langle -1, 7, 4 \rangle \cdot \left\langle 6, 2, -\frac{1}{2} \right\rangle = -6 + 14 - 2 = 6$$
$$(\mathbf{i} + 2\mathbf{j} - 3\mathbf{k}) \cdot (2\mathbf{j} - \mathbf{k}) = 0 + 4 + 3 = 7$$

æ

・ロト ・四ト ・ヨト ・ヨト

Theorem (Properties of the Dot Product)

If \mathbf{u} , \mathbf{v} , and \mathbf{w} are vectors and c is a scalar, then 1. $\mathbf{u} \cdot \mathbf{u} = |\mathbf{u}|^2$ 2. $\mathbf{u} \cdot \mathbf{v} = \mathbf{v} \cdot \mathbf{u}$ 3. $\mathbf{u} \cdot (\mathbf{v} + \mathbf{w}) = \mathbf{u} \cdot \mathbf{v} + \mathbf{u} \cdot \mathbf{w}$ 4. $c(\mathbf{u} \cdot \mathbf{v}) = (c\mathbf{u}) \cdot \mathbf{v} = \mathbf{u} \cdot (c\mathbf{v})$ 5. $\mathbf{0} \cdot \mathbf{u} = 0$

A D > A P > A B > A B >

Theorem

Assume u and v are vectors. If θ is the angle measured from u to v, then

$$\mathbf{u} \cdot \mathbf{v} = |\mathbf{u}| |\mathbf{v}| \cos(\theta) \iff \cos(\theta) = \frac{\mathbf{u} \cdot \mathbf{v}}{|\mathbf{u}| |\mathbf{v}|}$$

Assume **u** and **v** are vectors,

- u has magnitude 4,
- ▶ v has magnitude 6, and
- the angle between **u** and **v** is $\pi/3$.

Find $\mathbf{u} \cdot \mathbf{v}$.

$$\mathbf{u} \cdot \mathbf{v} = 24 \cos\left(\frac{\pi}{3}\right) = 24 \left(\frac{1}{2}\right) = 12.$$

æ

◆□▶ ◆□▶ ◆臣▶ ◆臣▶

Find the angle between $\textbf{u}=\langle 2,2,-1\rangle$ and $\textbf{v}=\langle 5,-3,2\rangle.$

æ

ヘロト ヘヨト ヘヨト ヘヨト

$$\theta = \arccos\left(\frac{2}{\sqrt{9}\sqrt{38}}\right) \approx 1.46 \, \mathrm{radians}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 ○のへ⊙

Definition (Orthogonal)

We say the vectors **u** and **v** are **orthogonal** (or **perpendicular**) if the angle between them is $\pi/2$.

Definition (Orthogonal)

We say the vectors **u** and **v** are **orthogonal** (or **perpendicular**) if the angle between them is $\pi/2$.

Theorem

The vectors \boldsymbol{u} and \boldsymbol{v} are orthogonal if and only if

$$0 = \cos\left(\frac{\pi}{2}\right) = \frac{\mathbf{u} \cdot \mathbf{v}}{|\mathbf{v}| |\mathbf{u}|} \iff 0 = \mathbf{u} \cdot \mathbf{v}$$

イロト イポト イヨト イヨト

Verify that $2\mathbf{i} + 2\mathbf{j} - \mathbf{k}$ is perpendicular to $5\mathbf{i} - 4\mathbf{j} + 2\mathbf{k}$.

æ

<ロト <回ト < 回ト < 回ト

$$(2i + 2j - k) \cdot (5i - 4j + 2k) = 10 - 20 + 10 = 0$$

æ

▲口 ▶ ▲圖 ▶ ▲ 国 ▶ ▲ 国 ▶ .

Definition (Direction Angles)

Assume $\mathbf{v} = \langle a, b, c \rangle$ is a non-zero, three-dimensional vector. The **direction angles**, α , β , and γ , are the angles that \mathbf{v} makes with the positive *x*-axis, *y*-axis, and *z*-axis, respectively.

Definition (Direction Cosines)

Assume $\mathbf{v} = \langle a, b, c \rangle$ is a non-zero, three-dimensional vector. The direction cosines of \mathbf{v} are

$$\cos(\alpha) = \frac{\mathbf{v} \cdot \mathbf{i}}{|\mathbf{v}| |\mathbf{i}|} \qquad \cos(\beta) = \frac{\mathbf{v} \cdot \mathbf{i}}{|\mathbf{v}| |\mathbf{j}|} \qquad \cos(\gamma) = \frac{\mathbf{v} \cdot \mathbf{i}}{|\mathbf{v}| |\mathbf{k}|}$$
$$= \frac{a}{|\mathbf{v}|} \qquad = \frac{b}{|\mathbf{v}|} \qquad = \frac{c}{|\mathbf{v}|}$$

Corollary

Assume $\mathbf{v} = \langle a, b, c \rangle$ is a non-zero, three-dimensional vector. The vector

$$egin{aligned} &\langle \cos(lpha), \cos(eta), \cos(\gamma)
angle &= \left\langle rac{a}{|\mathbf{v}|}, rac{b}{|\mathbf{v}|}, rac{c}{|\mathbf{v}|}
ight
angle \\ &= rac{1}{|\mathbf{v}|} \mathbf{v} \end{aligned}$$

is the unit vector in the direction of \mathbf{v} .

Find the direction angles of the vector $\mathbf{v} = \langle 1, 2, 3 \rangle$.

æ

ヘロト 人間ト 人目ト 人目下

$$\begin{split} \alpha &= \arccos\left(\frac{1}{\sqrt{14}}\right) \approx 74.4986404331^{\circ} \\ \beta &= \arccos\left(\frac{2}{\sqrt{14}}\right) \approx 57.6884667626^{\circ} \\ \gamma &= \arccos\left(\frac{3}{\sqrt{14}}\right) \approx 36.6992252005^{\circ} \end{split}$$

æ

メロト メロト メヨト メヨト

Definition

Assume \mathbf{u} and \mathbf{v} are vectors.

The orthogonal projection of u onto v is the vector, proj_v u, parallel to v that is closest to u.

ヘロト ヘロト ヘビト ヘビト

Definition

Assume \mathbf{u} and \mathbf{v} are vectors.

- The orthogonal projection of u onto v is the vector, proj_v u, parallel to v that is closest to u.
- The scalar component of u in the direction of v, comp_v u, is the signed magnitude of proj_v u.

There are three possible arrangements of **u** and **v** with $comp_v \mathbf{u}$ positive, zero, and negative, respectively.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Theorem (Projection Formulas) If u and v are vectors, then \triangleright comp_v u = $\frac{\mathbf{u} \cdot \mathbf{v}}{|\mathbf{v}|}$ \triangleright proj_v u = (comp_v u) $\frac{\mathbf{v}}{|\mathbf{v}|} = \left(\frac{\mathbf{u} \cdot \mathbf{v}}{|\mathbf{v}|^2}\right) \mathbf{v}$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Find the orthogonal projection and scalar component of ${\bf u}=\langle 1,1,2\rangle$ along ${\bf v}=\langle -2,3,1\rangle.$

э

ヘロト ヘ週ト ヘミト ヘヨト

$$\operatorname{comp}_{\mathbf{v}} \mathbf{u} = \frac{\mathbf{u} \cdot \mathbf{v}}{|\mathbf{v}|} = \frac{3}{\sqrt{14}}$$
$$\operatorname{proj}_{\mathbf{v}} \mathbf{u} = \operatorname{comp}_{\mathbf{v}} \mathbf{u} \frac{\mathbf{v}}{|\mathbf{v}|} = \frac{3}{14} \langle -2, 3, 1 \rangle$$

∃ 𝒫𝔅

◆□ > ◆圖 > ◆臣 > ◆臣 >

Definition (Work)

Assume a constant force vector, $\mathbf{F} = \vec{PR}$, moves an object from P to Q. The **displacement vector** is $\mathbf{D} = PQ$. If θ is the angle measured from \mathbf{D} to \mathbf{F} , then the **work** done by \mathbf{F} is

$$W = (|\mathbf{F}|\cos(\theta)) |\mathbf{D}| = |\mathbf{F}| |\mathbf{D}|\cos(\theta) = \mathbf{F} \cdot \mathbf{D}$$

A wagon is pulled a distance of 100 m along a horizontal path by a constant force of 70 N. The handle of the wagon is held at an angle 35° above the horizontal. Find the work done by the force.

$$W = (|\mathbf{F}|\cos(heta)) |\mathbf{D}| = 70 \cos\left(rac{7\pi}{36}
ight) 100 pprox 5734.06431002 \, \mathrm{J}$$

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへで

A force is given by vector $\mathbf{F} = 3\mathbf{i} + 4\mathbf{j} + 5\mathbf{k}$ and moves a particle from the point (2, 1, 0) to the point (4, 6, 2). Find the work done.

イロト 不得 トイヨト イヨト

The work done is

$$W = \mathbf{F} \cdot \mathbf{D}$$

= $\langle 3, 4, 5 \rangle \cdot \langle 4 - 2, 6 - 1, 2 - 0 \rangle$
= $\langle 3, 4, 5 \rangle \cdot \langle 2, 5, 2 \rangle$
= $6 + 20 + 10$
= 36

æ

・ロト ・四ト ・ヨト ・ヨト