Parametric Equations and Polar Coordinates 10.3 Polar Coordinates

B. Farman

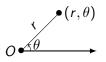
Mathematics and Statistics Louisiana Tech University

Calculus III

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Definition (Polar Coordinates)

The Polar Coordinate system consists of a marked point, O, called the **pole**, and a ray called the **polar axis**. A point, P, in the plane is specified in **polar coordinates** as a pair (r, θ) , where r is the distance between O and P and θ is the angle (measured counterclockwise) between the polar axis and the line segment from O to P.



A D > A P > A B > A B >

Conventions

A negative angle, -θ, indicates an angle, θ, measured clockwise from the polar axis.

イロト イヨト イヨト イヨ

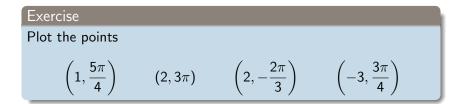
Conventions

- A negative angle, $-\theta$, indicates an angle, θ , measured clockwise from the polar axis.
- Negative angles can always be made positive by adding 2π .

イロト イヨト イヨト イヨ

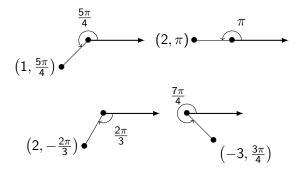
Conventions

- A negative angle, -θ, indicates an angle, θ, measured clockwise from the polar axis.
- Negative angles can always be made positive by adding 2π .
- A point $(-r, \theta)$ is the same as the point $(r, \theta + \pi)$.



▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

The Polar Coordinate System



æ

<ロト <回ト < 注ト < 注ト

Converting to Cartesian Coordinates

The point (r, θ) in Polar Coordinates has Cartesian Coordinates,

$$x = r \cos(\theta)$$
 $y = r \sin(\theta)$

Converting to Polar Coordinates

The Polar Coordinates for the point (x, y) can be deduced from

$$r = \sqrt{x^2 + y^2}$$
 $tan(\theta) =$

provided $x \neq 0$.

 $\frac{y}{x}$

Caution!

Using $\theta = \arctan(y/x)$ may result in **incorrect** polar coordinates!

Caution!

Using $\theta = \arctan(y/x)$ may result in **incorrect** polar coordinates!

Example

The point (-1,1) lies on the circle of radius $r = \sqrt{2}$ and $\tan(\theta) = -1$. However, $\theta = \arctan(-1) = 7\pi/4$ gives polar coordinates $(\sqrt{2}, 7\pi/4)$ that **do not correspond to the Cartesian coordinates** (-1, 1)!

◆日 > < 同 > < 国 > < 国 >

Relationship between Polar and Cartesian Coordinates

Remark

When x = 0,

$heta = egin{cases} rac{\pi}{2} & ext{if } y > 0 \ \ rac{3\pi}{2} & ext{if } y < 0 \end{cases}$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

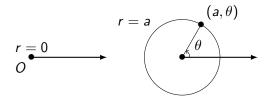
Definition

A **polar curve** is the set of all points in the plane with representation in polar coordinates, (r, θ) , that satisfy an equation $r = f(\theta)$.

A D > A P > A B > A B >

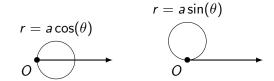
Circles about the Origin

Assume $a \ge 0$. The polar curve r = a is a circle of radius a when a > 0 and the degenerate circle O when a = 0.



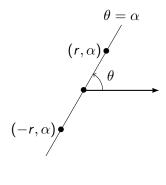
Circles Tangent to the Pole

The polar curves $r = a\cos(\theta)$ and $r = a\sin(\theta)$ produce circles that are tangent to the pole.



Lines through the Pole

For any angle α , the polar curve $\theta = \alpha$ is a line through the origin.



э

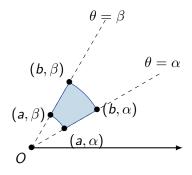
ヘロト 人間 トイヨト 人主ト

Polar Regions

Polar Rectangles

A polar rectangle is a region of the form

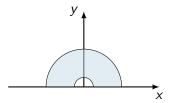
$$R = \{(r, \theta) \mid a \le r \le b, \alpha \le \theta \le \beta\}$$



▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ 三臣 - 釣ぬ()

Exercise

Describe the region in the upper half-plane bounded by the circles $x^2 + y^2 = 1$ and $x^2 + y^2 = 4$ as a polar rectangle.



Solution

This region is the polar rectangle

$$R = \{(r, \theta) \mid 1 \le r \le 2, \ 0 \le \theta \le \pi\}$$

æ

・ロト ・四ト ・ヨト ・ヨト