Parametric Equations and Polar Coordinates 10.1 Curves Defined by Parametric Equations

B. Farman

Mathematics and Statistics Louisiana Tech University

Calculus III

(日) (四) (문) (문) (문)

Definition (Parametric Equations)

Suppose that x and y are both given as functions of a third variable, t, called a **parameter**, by the equations

$$x = f(t)$$
 $y = g(t)$

that are called **parametric equations**. The points (x, y) = (f(t), g(t)) in the plane trace out a **parametric curve**.

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

Example

The parametric equations

$$x(t) = t^2 - 2t$$
 $y(t) = t + 1$

cut out the shift of $x = y^2$ up 2 and left 1 by writing t = y - 1 and

$$x = (y - 1)^{2} - 2(y - 1) = y^{2} - 2y + 1 - 2y + 2$$
$$= y^{2} - 4y + 3 = (y - 2)^{2} - 1$$

Exercise

Sketch the parametric curve

$$x(t) = \cos(t)$$

 $y(t) = \sin(t)$

・ロト ・四ト ・モト ・モト

æ

Solution

This is the unit circle

æ

イロト イヨト イヨト イヨト

Example

Fix constants h, k, and r. Express the circle of radius r with center (h, k)

$$(x-h)^2 + (y-k)^2 = r^2$$

as a parametric curve.

Solution

Start from the unit circle x(t) = cos(t), y(t) = sin(t). First scale by r, then shift horizontally by h and vertically by k to obtain

$$x(t) = h + r\cos(t)$$
 $y(t) = k + r\sin(t)$

for $0 \leq t \leq 2\pi$.

Exercise

Fix constants *a*, *b*, *c*, and *d*. Assume $a \neq 0$. Sketch the parametric curve

$$x(t) = at + b$$
 $y(t) = ct + d$

э

メロト メロト メヨト メヨト

Solution

Write

$$t = \frac{x-b}{a}$$
 $y = c\left(\frac{x-b}{a}\right) + d = \frac{c}{a}(x-b) + d$

to recognize this as the line through the point (b, d) with slope c/a.

Remark

In general,

$$x(t) = ax + b$$
 $y(t) = cx + d$

represents a line through (b, d). If a = 0 and $c \neq 0$, then it is the vertical line x = b. If a = 0 and c = 0, this curve is the degenerate line (b, d).

<ロト <回ト < 注ト < 注ト

Vectors provide a convenient shorthand for parametric equations. Instead of expressing our curve as two parametric equations

$$x = f(t)$$
 $y = g(t)$

we could simply write $\langle f(t), g(t) \rangle$ or, frequently as a **vector-valued function**

$$\mathbf{v}(t) = \langle f(t), g(t) \rangle$$

Example

The line through (2,4) with slope 3 could be expressed as the equation

$$y-4=3(x-2)$$

or as the vector-valued function

$$\mathbf{v}(t) = \langle t+2, 3t+4 \rangle$$

It is natural to imagine parameterizing curves in space by introducing a third function

$$x = f(t)$$
 $y = g(t)$ $z = h(t)$

and expressing this as a vector with parameterized coordinates:

$$\mathbf{v}(t) = \langle f(t), g(t), h(t) \rangle$$

